AINEWS

AIにおける「次元の呪い」解決へ、富士通研が機械学習の最有力学会で発表

富士通研究所は2020年7月13日、ディープラーニング(深層学習)における教師なし学習の精度を大幅に向上できる人工知能(AI)技術「DeepTwin」を発表した。AI分野の長年の課題だった「次元の呪い」を、映像圧縮技術の知見を活用することで解決したとする。同社は論文を機械学習の最有力学会である「ICML 2020」で7月14日に発表する。

 「次元の呪い」とは、データの次元(要素数)が大きくなると、そのデータを分析する際の計算量が指数関数的に増大する現象を指す。次元の呪いを回避するため、一般的に機械学習の高次元データは次元を減らす。

 ただ従来の手法には、次元の削減に伴ってデータの分布や確率が不正確になる課題があり、それがAIの精度低下を招く一因になっていた。例えば分布や確率が実際と異なると、正常データを異常と誤判定してしまうような間違いを引き起こしてしまう。